

Série 7

Exercice 7.1

On considère un amortisseur de Frahm simple permettant d'immobiliser la masse m_1 de l'oscillateur principal pour une pulsation relative β donnée et un rapport $\varepsilon = m_2/m_1$ fixé entre les masses de l'amortisseur et de l'oscillateur principal.

Série 7

Déterminer les caractéristiques de l'amortisseur de Frahm correspondant.

Application numérique : m_1 = 200 kg, k_1 = 100 kN/m, β = 0.9, ε = 0.1.

Exercice 7.2

Une table de moulage, supportant un moule, repose sur le sol par l'intermédiaire de plots en caoutchouc, l'ensemble ayant une masse m_1 de 350 kg. Le sable de moulage étant compacté verticalement au moyen d'un vibreur à 400 cycles/min, on constate que le système entre en résonance dans le sens vertical. Pour supprimer ces vibrations, on installe un amortisseur de Frahm constitué d'une masse m_2 et d'une barre cylindrique AB de longueur l=1.52 m et de diamètre d=2.54 cm en acier, comme montré à la Figure 7.2.1 ci-dessous. L'amortisseur est optimisé avec un rapport α unitaire entre les pulsations propres ω_2 et ω_1 de l'oscillateur secondaire (masse additionnelle m_2) isolé et de l'oscillateur principal (masse m_1 de la table) isolé.

Calculer la masse m_2 et les pulsations propres du système en considérant les appuis A et B comme :

- (a) des encastrements.
- (b) des appuis simples.

Indication: Les entretoises supportant la barre de l'oscillateur secondaire peuvent être admises indéformables.

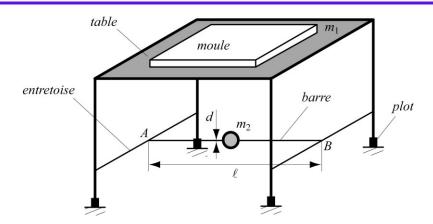


Figure 7.2.1 | Schéma du dispositif

Problème 7.3

Pour diminuer les vibrations de torsion d'un disque d'inertie I_1 - repéré par (1) dans la Figure 7.3.1 - provoquées par les irrégularités du couple d'entraînement caractérisé par l'angle de torsion $\phi(t)$ et transmis par un arbre de rigidité k_T , on installe un dispositif d'inertie I_2 - repéré par (2) - rattaché au disque (1) par quatre ressorts de rigidité k_T séparés par paire d'une distance 2a. On réalise ainsi un amortisseur de Frahm pour vibrations de torsion.

- a) Etablir les équations du mouvement en rotation des corps (1) et (2) dans le cas conservatif.
- b) Déterminer la rigidité k_r des ressorts de l'amortisseur de Frahm optimal pour un rapport d'inertie $\varepsilon=\frac{I_2}{I_1}=0.05$ et donner la valeur du coefficient d'amplification dynamique μ aux points P et Q définis dans le cours.

Application numérique : k_T = 1069 Nm/rad, a = 100 mm.

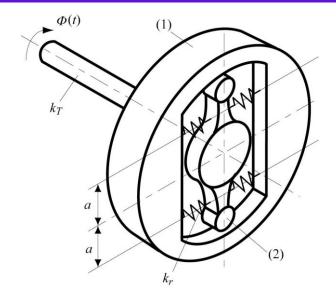


Figure 7.3.1 | Schéma du dispositif